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IMPEDANCE-MATCH AND ELEMENT-PATTERN
CONSTRAINTS FOR FINITE ARRAYS

INTRODUCTION

This report deais with an investigation of mutual coupling in finite and general an-
tenna arrays. The cost of large phased arrays and the need to make arrays conform- 1o
streamlined contours have stimulated interest in arrays of modest size. On the ¢ _gr_hand
the simplicity of the infinite-array model is so attractive, particularly in the case-of regular
arrays, that the lower bound on the size of arrays for which this model may be usefully
applied is of great practical importance. The element pattern for a single excited:
of an infinite array (in the presence of the remaining elements terminated by I
given by the classic formulas of Allen [1] and Hannan [2,3]. The limiting :form
element pattern resulting when such an array is matched in impedance as a ph:
at all scan angles was given by Wasylkiwskyj and Kahn [4]. Here the limiting fermi:of
the element pattern is obtained by direct calculation for finite arrays of general.corifigura-
tion. For regular arrays, results obtained for the finite array confirm the lower bounds
on array size obtained from considerations of efficiency in finite-excited infinite. armys
[6]. The infinite array closely models interior elements of arrays larger than 2
along any diameter.

Good impedance match over a wide range of excitations for all scan angles is- -fre—
quently claimed, at least as a design objective, for an array antenna. A technique is de-
veloped in the following for predicting the element patierns which would result if-any
given array of antennas were appropriately matched in impedance by means of a:lossless
feed network designed for this purpose. When the requirement for match is: most b
interpreted, namely, as match for all excitations, the form of our result can. be i
from the conservation of energy [6].

Consider an array of N antennas as a dissipative N~port with input impedanéé matnx

and that at the 1nput to the matching network by |, the conservation of energy

1T1= 1T R1. The superscript + denotes the complex -conjugate transpose matrix Ioss-
less 2N-port must therefore effect the transformation | = R~1/2]. The element: patterns
of the array, matched for all excitations, may be computed from these currents &

existence of a matching network was demonstrated by Bergfried [7] and Bergfrled and
Kahn [8]. The analysis and computational results presented here are based on ma “““ more
convenient network structure.

Generally impedance match for ell excitations does not constitute an ap
objective. This distinction between match for all excitations and an appropriat

Manuscript submitted March 29, 1976,




WALTER K. KAHN

mateh is essential in the application of this method to closely spaced arrays. For such

arrays the indiscriminate requirement of match for all excitations leads to difficulties in
tuning and excifation {and in computation) akin to those associated with supergain {8}.
The excitations and element patterns derived using partial matching are not simply pre-
dicted by the conservation of energy.

A uniform linear array of infinite line sources will be used to illustrate the generat
theoretical results. Since the elements have infinite extent, this array must be considered
as a special case of a planar array; it is the simplest example of such an array. When the
computational results for closely spaced elements are studied, the effect of using an ap-
propriate partial match, as opposed to one for all excitations, is apparent. The element
patierns derived for appropriately matched finite arrays will be eompared with those of
an infinite array (the Lmiting case) obtained by an independent technigue.

NETWORK PRELIMINARIES
Connections angd Port Novmalization Numbers

The desired excitation of a given array of antennas will be supplied from generators
with finite internal impedance through a lossless feed network. It is convenient to be able
to view this interconnection either in terms of voltages and currents or alternatively i
terms of incident and reflected waves. In this section somne aspects of the interconnection
process will be reviewed [10].

The inferconnection of two 2-ports is shown in Fig. 1. In ferms of vollage and cur-
rents with polarities and directions shown in the diageam this interconnection clearly
requires

V=yv, (1a)
I=-r. {ib}

From the diagram it would appear just as clearly for incident and reflected wave ampli-
tudes ¢ and b that

N R

Fig. 1 —Interconnection of two 2-ports

p
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r
a =25,

. | (2b)

However, when these incident and reflected wave quantities are defined with resp
complex normalization numbers, the defining relations being -

20/Ry = V + Z,[,

2b\/RBy = V ~ Z}I,
the relations (2) must be viewed with some caution.
Figure 2 presents the physical interpretation of the defining relation (3a) : ':W'he_n;
Eg = 2a+/ Ry, this relation is the Kirchhoff-loop equation for the circuit shown idently

Z must have the value Z = V/I. The average power transferred from the gener
is, algebraically, '

P = Re(V*D = |a® - |p2.

Thus maximum power is transferred to Z when b = Q0. From Eq. (3b) this 1m

= ¥ o
=Zg = Z

~| =<

in agreement with the principle of conjugate impedance match.

Let us now check the consistency of relations (1) and (2). Direct substitutie

' _ P '
2b \/Rg =V ZgI .

? _ ! EF 4
2d\/R, = V' + ZII'.

These relations are of the same form as (3) except that Z;f replaces Zg. That is,
“evident” interconnection relations (2) hold only when the complex normali
bers Z; and Zg are understood to be complex conjugotes of one another. -

Fig. 2—Equivalent circuit for interpretation
of normalization numbers Zy
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In the sequel it will be assumed that the port normalization numbers Z, are either
real or that (when an identification such as &' with a is made) the appropriate conjugate
relation between the normalization numbers Z; is maintained.

Representations of the Scattering Matrix and Scattering-Transfer Matrix

The scattering matrix relates incident and reflected wave amplitudes. Corresponding

with an impedance matrix Z,

2RLZb = (V- Z}1) = (Z- ZD), (Ta)
2RUZ%a = (V+ Z,0) = (Z+Z,)1, {Tb)
Omne eliminating |
aRYb = (Z~ ZINZ + Z,) 2R} %a
ar
b =[R2z - 2z + 2,) Ry
= B2 [1-2R)(Z+2,) | RY?a
= [1-2R}%Z + 2y R/a.
The scatiering matrix
S = RMUZ-ZzZ+ zg}‘lgéz’z
=1 - ’:2?22;42(2'-1"2}‘;’13?2 -48}

is symmetric if Z & wymmetric, as is most easily seen from the second form of {8).

Consider the 2N-port network shown in Fig. 3. The incident and reflected wave
amplitudes are ordered into column vectors a and b, so that

a
where
ey
and
ag

i

it

a b
(— f‘—) and b = (— & —) , (9a)
33 bg
{G.l &g ... GN] igh)
[ox+1 N4z - Tan)s {9c}
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9

(1 — / N (N+
(2] =———— I ([q,»_zﬂ)‘
(3 —— GIVEN —— (h+3)
2N-PORT
. -
. .
. .
(N) —— (2N}
Fig. 3~The reversed 2N-port
8y —— . ' I e
[ ko g — T
) —— — (N+2}
(3) ——= REVERSED (N+3)
2N“PORT
. .
. .
. .
(N ~——— @y

in which &, and d; denote the row vectors which are the transpose of the column vectors
a, and ag respectlvely, and where b, and By denote similar row vectors. Then -

The new column vectors a’ and b’ are

b! b
= (-20) - (22 -
bﬁ bfx

and
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a a
o - (_ o _5;\ Ra, (11b)

.

Hence b = Sa implies b’ = 882713’ or

S ; S
o ogept = [P0 T (12)
S ‘ Saa

Note that in this instance

L [o )
t
1

f;{-izk—i— ———):ﬁ. {13}

g
Atftention is now turned to the scattenng stransfer matrix. The scattering-transfer
atvriv af g given 2N -riert relatas $ha omnlitndac nad b with PN B L TP Y
i blia’h U.L @ SL!AELL LLYTRIUL L LTALED (JIIC a,u.:ynbuu.ca ﬂ& aliu U& ¥¥iLll ﬂ& NNV E Ua ‘,‘lﬂiﬁ'llcl UIICKII
ay and by with ag and bg), where now ay, and by, are amplitudes associated with perts 1
through N of a succeeding 2ZN-port connected to the given 2N-port at ports N + 1 through
2N, This is illustrated in Fig. 4. The scattering-transfer matrix 7, may also be found in

terms of the elements of 8. By definition

- ‘; bl TS -~z f}."’i}
= b /
and from (10} and Fig. 4

fa N [\ /5.

* \

il R S R B T e (15)

ba 35 0 ; 1 aﬁ
and
I

;7Y 1+ 0 a,

PR Sl Sl donlinll B St {15b)
bﬁ Scm; S‘RS 3;3

The scattering-transfer matrix is obtained on eliminating a from the above,
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2N-PORT
.
.
™

(1) —— (1)

(2) —— (2
2N-PORT

(N}~ (N)

o[ JRE_ _TPPTaptea | TOBTal - (15e)

When such a network is lossless and reciprocal, the scattering matrix being th .
tary and symmetric,
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-1k

Sag = Spa = Sga - {17}

An appropriate interconnection of ideal transformers leads to a purely real scattering
matrix Spg = Séé. it follows that such a network is “undone™ by cascade connection
with ifs reverse; that is,

ToTgeg = 1 (18}

when Sy contains only real elements.

The scattering matrix of a ZN-port comprising a set of distinct lengths 7, of lossless
transmission line, each with characteristic impedance {resistance} equal to the correspond-
ing port (real} normalization number, is

o @
—-=t-==1 {19a}
£71® Lo
where © is the real diagonal matrix
a = di&g {KIQI, }{ZQZ’ vy !{NQN] . (1gb)

The corresponding scattering-transfer matrix is therefore

- m o] (20)

In general this matrix is not real; hence cascading with its “reverse™ does not “undo” the
effect of the original network.

Consider the ZN-port {20} to be terminated by an N-port with scattering matrix 3.
From {16} one has

b, 0 | e7® =
S il DR it & {21)
bﬁ } 0 Sb‘@
go that
by = (79579 }a, (22)
3
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EIGENWAVE ANALYSIS OF ARRAYS

Uniform Versus General Arrays

For sufficiently Iarge arrays the characteristics of the array (and in pa.rtlcu
eigenvalues) ought to approach those of the infinite array in some sense. Since the elgen-
values for a uniform infinite array of reciprocal antennas are degenerate, we may expect
to see degeneracy or near degeneracy in the large finite array. This degeneracy may. cause
difficulty with some computational algorithms and certainly complicates pertm: yation
analyses, L

eigenvectors for large arrays approach those of the infinite linear array, and:-th
values exhibit reciprocity degeneracy (in pairs). :

dispose of the complicating factor of near degeneracy of the ezgenvalue problem torbe
solved, this report focuses on the uniform case. This is accomplished through symmetry
analysis. From the standpoint of computation, then, each of the subspace arraysl(odd
and even) of a uniform array constitutes a general array in which degenerames‘ ‘
accidentaily. The straightforward analysis which is appiicabie in each subspace
also covers the case of the general nonuniform array. LU

The uniform planar array and the circular cylindrical array generally possess-a 180°
rotation, reflection, or equivalent symmetry. The eigenvalue problem may- be-separated -
in accordance with the invariant subspaces of this symmetry. The formal analy_
symmetry is taken up next.

Consider a uniform linear or uniform circular array with ports numbered as.shown
in Fig. 5 comprising N = 2L + 1 elements. The twofold symmetry operatlon 1s represented
by the matrix T

0 |= F1 S (28)

a={ ay | | 7 (24a)
o/ L

9
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s O o © O
«ss -4 -3 -2 -i

Q0 9 Q L4
+ +2 43 +4 «»+ PORT MO

|
i

{11

-2}

-1}
Fig. 5—Uniform linear array and uniform cireular array
where

8, = {Q—LQ"L-FI ,*.Gﬂgﬁ_lg (24?}}

and

aﬁ = iaiﬂz ,.,ﬁLulﬁL} . £24C}

The tilde denotes the transpose. The L-dimensional submatrix oy is

o 0 ... 0 1
6 0 .. 1 0
G =1 cer e e e | (25)

<
ey
o
o

10
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The transformation of terminal quantities

where o
| |
1, | 0 | 1 ,
e ST
g1 o I 0 e
O'L : 0 : _UL

completely reduces the symmeiry operator F to the form 5':

r o I e
§'=95F ={ 0 1 1 10 < (28)
0, 0 | -1

Note that $= 9 = 1.

where the ports are numbered as shown in Fig. 5 and Eqgs. (24). When transfdrmed.to
primed terminal quantities according to (26), T

S =987
a+ B a+y v/2 E 0 0
B+y a+tvy BYZ | O 0
=] W2 B2 0 0
o 0 0 la-6 f-7
\ 0 0 0 (f-v a-7v
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The scattering matrix for a uniform array with N = 3 elementis has the form

By 8

S=¢vr~v @« i, {30a)
§ ¥ L
% ‘ £

where again the ports are numbered as shown in Fig. 5 and Eqgs. (24). When transformed
fo primed terminal quantities according to {26},

B+8 /2 ' 0O
| o t
§' = 38T = /2 « 0 | {30b)

Consider now the conventional set of eigenvectors for a circular array

W < [fv] -L<e<L, (81a)
and

m . 2 (27 ) 31b

g *\/—expfk'gm)» (31b}

These also canstitute the conventional form of excitation for the linear phased array,
although they are eigenvectors of such an array, only for the case ¢, m — v, The latter
can be deduced from considerations of symmetry. The complex-conjugate eigenvectors
are degenerate; that is, the eigenvalues bhelonging to distinct complex eigenvectors (m} and
{—m} are the same, The same pairing is accomplished by the aperator . F also effects

a change of sign in the exponent in Eq, {31} through a change in the sign of 2. I fol-
lows that
1
utnd :g{liﬁr}t(m), L < m< L, {32}

is also an eigenvector (possibly the same eigenvector} of the cireular or infinite linear
array. Therefore these new eigenvectars of the array are by consiruction {(a) real and
(b) ﬂigenvectors of . A different labeling n is usually convenient for the vectors uln},

R PR T L L .

The Lu{fespunuence af # and m is in any event established Oy (J&}‘

The eigenvectors of F are classed as either even ({belonging to the eigenvalue +1) or
odd {belonging to the eigenvalue ~1}): the vector

um = % (1 + Fytm (33a)
is even, and the vector

i2
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W = 2 (1~ F)em . (83b)

is odd.

[—%- (1+ 3")]2 -laz9. LD (34a)
They are orthogonal:
S A+H A-H=50a-HFa+F = L (34b)
And they are complete: |
1

2
out the eigenvectors according to the above scheme is computed exphmtly '
F = 971 and that

gu'tm = yln);
therefore

u(m) = % g1+ F)tm

1p v 0 g
1 1 Bt E i M
gIA+H =7l 0 1 vZ ] 0

0o, 0 , 0

and

o, 0 | 0
FIa-H -5l o 1 ol o

1, 0 | -9

13
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From the placement of zeros in (36a) and {36h) it is clear that {1 + F) has projected out

the even part of t™), so that the last L rows of u'("™) are necessarily zeros, and that {1 — F)
has projected out only the odd part of ™, so that the first L + 1 rows of u (") are nee-

essarily zeros,

In summary the preceding analysis shows that the degenerate eigenvalues of the cir-
cular and infinite linear arvay are split between the two invariant subspaces belonging fe
F and that the two separate reduced subspaces will contain only accidental degeneracies.
The eigenvectors y'tm }, properly renormalized where necessary, may be employed together
with straightforward nondegenerate perturbation theory to solve for the eigenvectors of
finite linear arrays.

CALCULATION OF ELEMENT PATTERNS FOR SUITABLY MATCHED ARRAYS
Execitation and the Radiation Fields

An elementary radiator of an array is usually specified in terms of its properties
when isolated from the array environment. In a dipole array, for example, the elementary
dipole is commonly specified in terms of the properties of the isolated dipele, This in-
formation is in general not sufficient to permit caleulation of an element pattern in the
array environment. However, when all antennas but the one anlenna element excited are
terminated in some fixed reactance, the element pattern in the array envitonment may be
nearly the same as the isolated antenna pattern. An array of small dipoles is one example.
When all dipoles but one are open-circuited, the pattern of the single dipole is nearly that
of an isolated dipole. An array of slots in a large ground plane is another. When all slets
bat one are shori-circuited, the pattern of the single excited slot is nearly that of a single
slot in a ground plane. For canonical minimum-scatiering antennas [11] the element
patierns in the open-circuited array envirenment coincide with the isolated-element pat-
terns. Without any restrictions on antenmna type it will be assumed in this section that
the radiated field of a single excited element in the open-circuited-array environment is a
known complex vectoar function of the direction angles 8 and ¢

FloXe, ¢) (37)

and is normalized so that with unit incident power excitation the radiated power is

Prag = j 178, 6)1% a2

2

Ze - Z¥
0| (38)

=1- 17777,

where Z; is the input impedance to the excited element and df2 is the element of solid
angle sin § dfd¢. A common alternative normalization fixes on the radiation amplitude
produced hy a unit input current; this field will be distinguished by an [ subscript, f; (8, ¢).
The corresponding power normalization is then

14
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Bag = [ 1196, 0)" 492 = Re 2, e

Since for this open-circuit-environment condition

2By a =V + Z,1
= (Zg+ZHI, “(40)
it follows that -
710, 0) = —Zg—\;?_gzi?“”w,m : @1
In the special case Zy = Z;
7N, 9) = VB, 7°N8, ). — )

Since f1 nw @), is the pattern radiated by the nth element when ail the. remammg
currents are zero {open-circuit condition), one may employ straightforward superposition
to obtain the field for any set of currents. In particular, if the correct !, corresponding
to matched terminations at each element have been found from the mu!ual <ouplmg
constraints (V = ZI or b = 8a), then the field radiated by some element in-the
array environment for that element is

= L -
fo,9) = ) e, 01,
n=-L
ZOn + Zg

]

R0, 1, . 43)

N A

In the terminated-array environment the correct currents produced by a. real generator
are most easily expressed in terms of scattering quantities

\/R—gln =a, — b,
L
= 3" Gum ~ Sumdom - (@4
m=-L O
= q, .

Note the difference hetwaoen the nnen-nivenit ennditinne
note pne difigrence beltween the open-cIrcult conqiiions

condition expressed by (44). Using (44),

15
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= zﬁn + Zé L >
6,¢) =— .~ ()0, ¢)a, .
7@, 7 2. 9, ¢, (45)

a=~L

The Modified Array

The input impedance matrix for an array of antennas, considered as a dissipative

N-port, generally has both resistive compaonents R, and reactive components X -

The resistive components gre directly related to the element patterns in the apen-circuited
environment through the conservation of energy:

E}
= Re f Fol8,¢) - 115 (0,4)a02. (4m
T Finars o Lu..,,,. o nlati~roh =it bt o s o TE
Liic g §333 d.l.y LUIHPU b nave 1y bu(..[i Li.IIIqUU ib‘idbit}ubiili} Wi%s.u L»LHS HAalLOLLILN, cunuuugn

in spema} cases the 1magmary components may be connected with the analytic continua-
tion of the real patterns into the complex angular domain [11}. These reactive compo-
nenis may obviously be canceled through a lossless reactance network, one form of which
is shown as

B = j[Bppl = +il"B; 2X pal

in Fig. 6 and is described in more detail subsequently. The combination of the array plus
this cancellation network is termed the modified array. The modified array has the real
inpui impedance matrix R = [R,,,.].

The lossless reactance canceliation network in Fig. § 15 formed by attachment of
quarter wavelengths of transmission line at each antenna port. If the transmission Enes
all have the same characteristic impedance R;, then the inputl short-circuit admittance
matrix of the array plus transmission lines iz

Y = R;%Z = (R;%Z,,,1. (48}

At this point then the shunt susceptance network jB = —j Im Y is connected to produce
the desired cancellation effect. The addition of a second set of guarter-wavelength trans-
mission lines, also of characteristic impedance R, reconverts the residual real part of the
admittance matrix, Re Y, into the impedance matrix R = {R,,,] = RZ Re Y.

16
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ANTENNA ARRAY

sae ss e
<|¥

o [ it 1 J ¢ Ff [ }
1

N [ 3 I ] L ]

INPUT TO MODIFIED ARRAY

Fig. 6—Modified array

Matching Network for the Modified Linear Array

The general scheme of the matching network which will be employed-in-our calcula—
tions is shown in Fig. 7. There are three main sections: the first sectio : three
large rectangles) is a real transparent 2N-port, the second section (drawn rec-
tangles) consists of N disjoint lossless two-ports, and the third section (dra e
large rectangles—a mirror image of the first section) is a real transparent 2N-port: the

“reverse” of the first section. If the two-ports of the second section were_ju !
nections, the first and third sections would “undo” one another. Excitatio
the left then would appear at the correspondingly labeled antenna input po
This apparently trivial point of notation is essential to preserve the physma
of our results. We now specify each of these sections in more detail.

The large rectangle of the first section of Fig. 7 separates all array excl-' 15-into
even and odd portions as discussed earlier. The scattering matrix of this 2N-p :

[

0. J
Sg={—-—-+-~1,
o
[

where J, the transformation (26), is such that

17
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——— -t_/ L+t i; L-2 ft +2 1 L4t - o
L I oy -] L+3 b3 242 L= o
. - - * . E
. . M : =2
PR Iy S (TP o4l Lpb—a -t 2
=
—Jc  aiwi—liu 2ap oap sl —daisr ol
1 PLaR—] Tei—iZ [ e T S AR S p - - g
* » = N . Wt
s . . » s L
¥ * - - L) 8
G el btk bt— =
—L LN L il 2L LN L=
i A

Fig. 7T—Matching network for symmetric array

f o PO
, ~ Syt G
§ =78 =t-——-+-——1}- {50}
0 1 Sty

The mafrices S(+§ and S’(_) are the even and odd submatrices of the anienna-array scatter-
ing matrix 5.

The two smaller rectangles of the first section have the 2(L + 1)-by-2{L + 1} scatter-

ing matrix
g matnnx

R e (51a)

and the ZL-by-2L scattering matrix

i

| £Y
L e (G1b)
o \fﬁ—ai ﬁ)

respectively, where Feoy and i{ \ are matrices whose columns are the real, normalized

YIILit o4} a4

eigenvectars of the even and odd subscattenng matrices Sg.y and S¢—y in some arbitrary
{but thereafter fixed) order. For a detailed description of the third section of the match-
ing network, it now suffices to state it is the ‘‘reverse” of the first section.

The secand or middle section performs the matching function. A typical 2-port
section is shown in Fig. 8. The scattering matrix of this transformer matching section is

/ to \,1—;}2\? (52}
\Witez o ) o

where

18
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—_— B et
IMPEDANCE {2 { j—— IMPEDANCE
Rg Q. (¢, n)}
1 w
— O
e -

w2 = Q i, nI}/Ry

Fig. 8—Typical transformer matching 2-port

Q. (t,n) - R
p = p(,n)= Q. (%, n) + R :

The notation Q,(*, n) refers to the input impedance at the nth even (+) or. dd (-}
matching two-port, which is connected between the two nth output ports.o
8(+) and its reverse. @Q,(%,n) is, by construction, the nth even or nth odd-eige
the modified antenna array resistance matrix R. -

For an incident wave a, at terminal 2 of a matching 2-port, a wave: am lit;
generated at terminal 1 in accordance with {52):

by =pa;* VI-p%2 a
As arranged, b; = 0, which means that

= VT-72 a, - pay; T (54b)

hence

This is the wave which is incident on the first-section port and results in an- 1 ‘md nt wave
on the modified array of e(1 - p2)71/2a,, where e is the eigenvector of Rc idi
to the port excited by a,. At the ports of the modified array a reflected: wave,_‘ 4
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the incident wave, is generaied. The currents (44) at the modified array, proportional te
the difference of incident and reflected amplitudes, are elements of the column matrix

RME(1 - pre(t - p2) M,

(55)

The eigenveetors of the scatfering matrix of the raodified array § can be ealeulated
from the eigenvectors of Syzj. If the matrix eigenvectors of S¢4y is &(+) and of Sy is

{ce(_ y. Fhat is,

&(+y = [e(+, 1)e(+, 2) ... e(+,L+1)]
b_y = fet-, Le(-,2) ...e(~, L)},
then
&= [e(-Lye{-L +1)...e{0) ... e(L)]
{
Sy 0
= - -+ -—(_—- — ?{ .
) &

(57}

With these definitions, for arbitrary input a to the matching network, Fig. 7, the

~cutrents-at the inputs {o the modified array are

VE I

a—b

Il

&1 - p¥(1-p2y2%8a

n

I

11 - p)r+p) 1 % Ea

1

6{Q,17Y%Ea,
where 7 is now the diagonal matrix

p = diag {p(-L), ..., p(0), ..., p(L}}

and the maftrix &, is given by

Qr = diag {Qr{_L}& fevs Qr{(}}a ey Qr{zf}} .

. L

e I AL L T N S ]
rom the definition of &, {58

3

b} may be rewritten

VB 1 = RH%

as anticipated.

o]
[t}

(58a)

{58b)

{59a}

{52k}

{60}
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Partial Match of the Array

Although an array can be matched for almost all excitations by means. of:
network developed in the preceding paragraphs, an exceptional circumstance
one of the eigenvalues of the resistance matrix is zero or infinite. This can
an array of lossless antenna elements which actually fail to radiate and theref :
a purely reactive impedance, which case is excluded from further conmderatlon ““““ because
of its triviality. Even with an array of bona-fide antennas (antennas whlch are not pu.rely
reactive) this exceptional circumstance can occur “accidentally.” By this is meant an
occurrence which can be removed simply by an infinitesimal perturbation: of the array.
Again, this is of little interest here. However for large closely-spaced regular arrays-a set
of small (or large) eigenvalues occurs in a nonaccidental fashion which conseq tly is of
physical interest. e

As has already been mentioned, the characteristics of a large finite afr"aylgapprdach
those of the infinite array. In the infinite-array model eigenexcitations produceé either

real angles. An excitation which would produce in-phase addition only at c 'gles
(in the invisible region) in the case of finite arrays radiates into visible space- gh-a
sidelobe. However the active input resistance corresponding to this condition is’ much
smaller or Jarger than unity or R;. Attempts to realize match in these cases are sub]ect
to limitations closely akin to those associated with the realization of supergmn J9].. This
aspect of the match problem will be illustrated later,

The matching network, Figs. 7 and 8, leaves the corresponding elgenexcltatlon un-
affected when the turns ratio of the transformer two-port (Fig. 8) correspon -
particular eigenexcitation is replaced by a straight connection or equlvalently
ratio is set equal to unity: w = 1. A wave aq incident at the input tc this
produces wave amplitudes eq; incident on the modified array, e being the- elgenvector of
S involved. The corresponding currents exciting the modified array (44) are:
R;'/2e(1 - p)a;. In general therefore (58) must be replaced by

VE;l=a-b - (6la)

I
o]
ha]
an
-3

—
2]
=L

g

where
B 1/2
P = dias (1 - P(m)\/
< hann =] ;--9\1 + p(m)/ 3 sasy
= di -1/2 _ “en e
dlag _:”’ Qr (m)1 “eey Qr(n) + Rgn » ..:] . i (62b)
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In Egs. {62) it is understood that the first expression within the brackets applies to eigen-
excitations (eigenvalues) that are matched and fthe second applies to eigenvalues that are
not matched. The currents (61) are now no longer simply related to RY/2 and cannot be
found simply from energy considerations.

APPLICATION AND EXAMPLES

The preceding theory will now be applied to a linear array of infinite lne sourees.
The theory is in no way limited to uniform arrays, nor are the computations appreciably
simplified by the assumption of uniformity. Uniform arrays are chosen because of their
practical importance and because the comparison of the finite-array resulfs with theose ob-
tained for the corresponding infinite array [4] is of special interest. Pertinent resulis ob-
tained in Ref. 4 are summarized in Appendix A for convenience.

Consider an array of line sources distributed along the x axis of a Cartesian coordi-
nate system, each line source being of infinite extent and parallel to the z axis. The pat-
tern of an individual linesource element is isotropic in the xy plane. The line source may
be one of electric current {in which case the electric vector is polarized along the z axis),
or the line source may he one of magneiic curreni, simulating a narrow slot in a conduct-
ing plane (in which case the magnetic vector is polarized along the z axis}. The mutual
coupling between such elements may he computed on the assumption of a single-mode
element [14} or a canonical minimum-scattering antenna {11}. The result for either
polarization is {at appropriate reference planes} {111

2o = 1, m-n,

;;;;;

B Rlx, - x,), m#n, (63)

where x,, is the coordinate at which the line source intercepts the x axis, Héz) ig the
Hankel function of the second kind and zeroth order, and k is the wave number 27/A.
The impedance matrix of the “medified array™ comprises the real elements

Rpyp=1, m=n,

Jolklx, —x, 0, m#*n, {64}

where J denotes the Bessel function of the first kind and zeroth order.

Figure 9 shows element patterns in the ferminated-array environment for the center
elements of uniform arrays as dotted lines. The elements of the array are kD = 7 radians
apart, ang the arrays consist respectively, of b, 15, and 25 elements. In each case the
center element is excited by an incident wave carrying unit power. In comparing the re-
sults obtained with those for the infinite array {Appendix A} it must be remembered that
the infinite-array formulas are conventionally gquoted for radiation into a halfspace. Ac-
count of this is taken if the directly compuied absolute power patterns are multiplied by
a factor of 2. For uniformity of presentation both the finitearray patterns and the
nfinite-array pattern were further divided by 2Dfw. This has the effect of normalizing
the element patterns for any spacing. The normalized infinite-array element pattern is
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shown as a solid ine. If is clear that the element pattemn for a matched array approaches
the infinite-array result. The approach is oscillatory {after the fashion of trigonometric
series] rather than smooth. For N = 25 elements the pattern closely follows the infinite-
array result except in the immediate neighborhood of radiation along the plane of the
array, & = 90°. This result is in agreement with the expectations based on element of-
ficiency [51.

Only half of each element pattern is shown in each case, because the power patierns
are symmetric with respect to & = 0. In the case of linear ar planar axrays, this symmeiry
is always a feature of {optimally} matched element patterns, since the currents exciting
each element of the radiating aperture are real (either in phase or 180° out of phase.)
That these currents are indeed real is evident from (60} or {61}, for a = [§,¢1, that is,
when only the ¥th input to the feed network is excited by a unit incident wave.

The element pattern in the terminated-array environment for an edge element of the
N = 25 array s shown in Fig, 10, Is shape is somewhat broadened when referred to a
cos  pattern and the peak gain is reduced approximately 0.7 dB.

Element patierns in the terminated-array environment for an array of N = 25 gle-
ments spaced kD = 4.0 radians apart are shown in Fig. 11. The element pattern for the
center element is shown in Fig. 11a, and the edge effect present at this spacing is dis-
played in Figs. 11b, 11¢, and 11d. The center-element pattemn in Fig. 11a displays a close
oscilltatory approach to the infinite-array element pattern. The snarp break to a null at
34.8° in the infinite-array element pattern associated with the eniry of a grating lobe is
evident also in the finite-array patterns. Of course the finite-array element patierns do
not have an absolute null. As before, the largest deviations occur in the neighborhood of
the array face (8 = 90°). The peak gain of the edge element (Fig. 11b) is reduced by ap-
proximately 0.8 dB. In the second and third element from the edge of the array (Figs.
1lc and 11d) the sharpness of the features associated with entry of the grating lobe appear

Fig. 10—Element pattern for the edge etement
o8 (€ = 12) of a linear array of line sources with
N = 25 elemnents spaced &IJ = 7 radians apart

FOWER PATTERN {normalized)

oG i i i i 1 i
’ i 20 30 40 30 &0 O 8RO 90

PATTERN ANGLE, & {degrees)
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somewhat smoothed. The overall effect of this smoothing is to narrow the main lohe of
the element pattern.

In the preceding examples it was feasible to match the arrays for all excitations; that
is, Eg. {60) could be employed to comptite the currents exciting the modified array. For
spacings &IJ < 7 we must be prepared to implement an appropriate partial mateh.

Consider now a closely spaced array of line sources, with elements spaced kD = 2.0
radians apart. The eigenvalues of the mutualresistance matrix for the modified array are
listed in Table 1. It is clear that some of these eigenvalues imply active reflection coef-
ficients differing in meagnitude only slightly from unity. This is in accordance with our
expectations based on the infinite-array model. In an infinite array with this close spacing
there is a continuum of (eigen) excitations for which the active reflection coefficient nec-
essarily has unit magnitude.

Figure 12a shows the element pattern in the terminated array environment for the
center element of the array when the array is matched for ail those eigenexcitations for
which the eigenrefllection-coefficient magnitude = |p{r)| < 0.5. The corresponding range
of eigenvalues of the mufualregistance matrix is 0.38 < @ {n) < 3.0. The remaining
eigenexcitations of the modified array are left undisturbed. The sigenvalues which were
left unmatched are italicized in Table 1. Consequently 15 of the 25 eigenexcitations
were matched to achieve the pattern shown in Fig. 12a. Note that 15 is nearly the aum-
ber of half wavelengths in the aperture: NED/w = 15.91. The fraction of elemenis whichk
may readily be matched is approximately equal to the ideal element efficiency of the cor-
responding infinife array, n = kD/v [5,9].

Figures 12b and 12¢ show the same element pattern when tolerances on the eigen-
values of the resistance matrix Q,(rn) are respectively 6.05 < @.{n} < 20 and 0.001 <
¢.{n} < 1G00. These {olerances correspond to ignoring eigenreflection-coefficient mag-
nitudes [pln)l = ¢.9 and {pln} = 0.998. When gll eigenvalues are matched, a pattern
with wide oscillations results (Fig. 12d). As total match for all excitations is approached,
the pattern oscillations widen, and a large lobe spills over into visible space near 90°.

Thus the difficulties associated with matching exireme values of the active resistance
¢.(n} are akin to those involved in the attainment of supergain. Supergain is evidenced

Table 1—The 25 Eigenvalues @,{n} of the Mutual-Resistance Matrix for a Linear
Array of Line Scurces With N = 25 Elements Spaced £D = 2.0 Radians Apart
{The eigenvalues in italics are outside the range .33 < @, (n} < 3.0}

3.28225 1.41119 1.07501 1.00214 8.23879 X 1075

3.18452 1.26061 1.05742 0.862315 2.23549% 107¢ |

1.85831 1.22749 1.03141 1.83745 X 1071 | 543821 X 1978

1.79140 1.14601 1.01972 1.83886 % 1072 | 3.88444 X 1079

1.45741 1.12175 1.00759 1.25242 % 1073 | 1.94222X 1079
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even in the elemeni patterns. The power pattern for an element of the infinite array, as
computed from Hannan’s formula, atiributes to each element the normal gain kD cos §
associated with the area per array element [Z]. {For the linear array 27D/ replaces the
planar-array expression 47A/M2.) Thus power radiated in excess of the power per radian
predicted by Hannan’s formula (the solid line in Fig. 12} represents the degree of super-
gain attained. This excess is slight as long as the active impedance mismatch (eigenre-
flection coefficients) tuned out are modest.

DISCUSSION AND CONCLUSIONS

The wider implications of the results nresented in this report lie in confirmation that
constraints on array performance predicted by the relatively simple infinite-array model
effectively operate as constraints on the performance of finite arrays in a manner ane fo
an extent illustrated by the detailed calculations presented. These constraints Hmit the
attainable element patferns, including specific features of these such as grating-lobe nulls,
and Yimit the attainable reduction of mutual coupling among antennas by appropriate
feed network design. Confirmation of the effectiveness of these constraints in finite
arrays is required, since the reasoning employed to establish them in the case of the infi-
nate array cannot be carried over to the finite case. Indeed the general physical grounds
for the constraints disappear in the finite array. These physical grounds are replaced by
more complex and special mutual-coupling effects. Consequently the phrase “effective-
ness of the constraints™ is used.

Reasoning based on the conservation of energy and symmetry shows that the pattern
of a single element excited by a unit incident wave in the environment of an infinite regu-
tar planar array of identical terminated elements must satisfy {2,3]

Dx

In particular equality can hold only in the matched case, when the active reflection coef-
fictent {for all elements excited with uniform amplitude and linear phase} is zero. The
form of the element pattern for a matched infinite array is given explicitly by Hg. {Al}
of Appendix A. The generality of the physical grounds is such that {(65) applies inde.
petident of the tvpe of antenna slements employved. This himitation is particularly severe
at wide angles {f =~ w/2} in that it eniirely precludes radiation parallel to the plane of the
array. The finite arrays of line sources used as examples constituie a particularly rigorous
test of this prediction from the infinite-array model, since individually the Bnesource

elements radiate isotropically in the plane normal {o the line source.

Figure 9 shows the exient to which this infinite-array consiraint remains effective.
As is aiso possible in the case of an infinite array with spacing kD, = 7, where I, = /2,
each finite array is matched for all excitations of the array. Obviously the constraint
would not apply at all to an array consisting of only a single element. Yet for an array
of onty five elements the center element clearly shows the predicted generic behavior. As
one expects, when the number of elements in the array becomes larger, the effectiveness

nf tha canctraint Inrroacas Wigures 1) ehawe fhat avar in an adon olomant tho ratborn ic
O Lhe conElraint Incregses. FIgure 1V SNOWs IndL evVen I an oqge clement e pRiein 18

strongly modified in the direction predicted by the infinite-array model.
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The element pattern may display relatively sharp dips or nulls. In the infinite-array
model these may be classed as either necessary nulls or removable nulils [4].
nulls are removable in the sense that a feed network exists which can in prin
out these nuiis, The location of necessary nuils in the element patiern is J,U
sidering the operation of the antenna as a phased array. Such a null may occur in.
direction indicated by the main lobe whenever a grating lobe just enters visible space
(Appendix A), Figure 1la shows how this feature is effectively reproduced by the center
element of a finite array of 25 elements. Again, even the edge element of the same array
(Fig. 10b) shows the influence of this null, even though the infinite-array model cannot
be expected to apply quantitatively near an array edge.

For closely spaced arrays the infinite-array constraints require zero radiation:-for cer-
tain excitations of the array. As has been stated, the general physical grog .
constraints do not carry over to finite arrays. Thus the finite array can radiate
therefore in principle be matched) for all excitations. When this match is in £
tempted, that is, when the high degree of mismatch which replaces the absolu
array constraint is tuned out, the correspondence with the infinite-array modg
This is illustrated by the element patterns shown in Fig. 12. In Fig. 12a only
matches are tuned out, whereas in Fig. 12d match for all excitations has been
in contradiction to the constraints of the infinite-array model. Figures 12b.a
various stages between these extremes. In Fig. 12d, as expected, corresponde

v i b ~Adnl o lawaaly TAat Tv\ )’\ﬂ'v'" n11]-)1- ‘l-l‘\a n]mmah*- 'nrnr'l1naﬂ nt‘lhﬂ‘l‘gh al
LAAanlaw-mi.uJ oAl 15 LdLgCly 1Uou. alviCuaal Wl Caeinoil v T L4

» ] ‘I'nt“iﬁ_
VERRL AL

tion directed along the array. The generally unsatisfactory nature of this pattern com-
mends acceptance of the constraints of the infinite-array model in setting des1 bjectives
for practical arrays.

arrays. Appropriate placement of the necessary nulls synthesizes a pattem
constant interior to the nulls and is reduced by 5 dB in the region out31de th null van-
ishing along the array face.
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Appendix A

ELEMENT PATTERNS OF A MATCHED INFINITE ARRA

A single element of an infinite planar lattice of identical elements i a
unit incident wave. The remaining elements (or their corresponding po uat. to
an interconnecting feed network) are terminated. The feed network has
tuned so that, if all elements were excited with uniform amplitude and
phase, the array would be matched at all scan angles. The element pat ; d
under these conditions was found in Ref. 4. A simplified planar array ms mnstructed
as a linear array of sources, each of which has an infinite extent in the cllre
to the array axis. For this special case the resulting element pattern is giv

1 . .
- D P8 o
P(8) :—Tx- (cos ) [1 + Z P(‘(Gn;) (cg(;soi )] 9o -.(Al.)

m+0

where

f’(B) = the limiting element pattern in the terminated-array enviro
when the array is matched,

P(6)

any element pattern in an arbitrarily terminated env;ronmentm such
the pattern of a single excited element of the original (unmatche‘
when all other elements are open-circuited,

§ = pattern angle measured from the z axis (in the xz plane}, 6
8, = grating-lobe pattern angle defined by the equation

A

D,’

sinfly, = sinf — m

Dy = spacing along the x axis, and

A = wavelength.
The summation in Eq. (A1) extends over all real angles @, = il',"i2,"'.1 ::; those
values of m, m # 0, such that ' '
sin-m-| <1 (A3)
D, :

The most significant feature of Eq. (A1) resides in the singularities of the-term~ - -
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PU,) cosd
LA Ad
mé:(; Py cosfly, (ad)

The ratios P(#,,}/P{#) are shown to be invariant, that is, the same for any element patiern
of a given antenna element independent of termination or (uniform) interconnecting feed

network. Each singularity of (A4) corresponds to a necessary null of the element pattern
in the terminated-array environment.
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